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Abstract-The optimization of a trussed type structure of given geometry and material properties can be
formulated as an exact and explicit mathematical programming problem in a mixed space of design
variables and behaviour variables. Three techniques are presented, corresponding to the three classical
analysis methods of structural theory. In the case of a sinale Ioadiq condition without variables linking, the
proposed method is very efficient sincc it eliminates the problem of multiple reanalysis without increasing the
dimensionality of the problem and the number of constraints. In the other cases the numerical efficiency of the
technique depends on the specific problem to be solved.

I. INTRODUCTION
Since the earliest applications of mathematical programming methods to structural design[l],
the approach was plagued by the numerical effort required for the computation of the
behavioural functions. such as stresses and displacements. at the successive candidate design
points. These quantities are usually implicit functions of the design variables and their
evaluation requires, in principle, a reanalysis of the structure for every move in the design
space. In fact. much of the research in optimum structural design during the last decade was
channelled towards developing methods which necessitate less reanalysis, the implied ultimate
gbal being the elimination of analysis altogether. In the design of a minimum volume truss of
given geometry and elastic material properties, one encounters basically the same problem. The
nodal displacements u and member stresses are implicit functions of the cross-sections of the
elements a and their evaluation requires an analysis of the structure for every change in the
design vector a.

Many methods have been developed for this basic minimization problem, among others the
two following families of solution techniques. A first approach substitutes for the implicit
behavioural functions approximate explicit expressions, usually truncated Taylor series expan
sions. Quadratic[2] and linear [3] approximations have been used and the latter seem to be very
reliable when developed in terms of the compliances of the structural members [4,5]. The
behavioural functions can also be approximated by single term polynomials and the minimiza·
tion is then performed using geometric[6] or linear [7] programming. In all cases, exact
extensive analyses are periodically required to update the model such as to ensure convergence
to the optimum solution.

An alternative approach circumvents the analysis obstacle by appending the analysis
variables to the design vector [8]. Consider, for instance. the equilibrium equations of the
displacement method

Ku=p (I)

where K is the reduced stiffness matrix and p is the vector of external nodal loads. In the design
space of variables a and u. the original minimization problem in addition to the equality
constraints (1) is a mathematical programming problem with explicit constraints since the
stiffness matrix can be expressed as

(2)

where m is the number of elements of the structure, and matrices K1 are function of element
geometry, connectivity and material properties only. Similar considerations lead to explicit
constraints in the design space of a and tit where t, is the vector of redundant axial forces [9]. In
this case. the basic problem is supplemented with equality constraints which impose geometric
compatibility.
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As opposed to the approximate model methods, the second family of techniques merits
more the denomination of structural synthesis, since design and analysis variables and con
straints form one mathematical unit. These methods, however, have serious computational
drawbacks. The inclusion of analysis variables and constraints in the mathematical program
ming formulation invariably expands the design space and increases substantially the number of
constraints. This is even more so in the case of multiple loading conditions where a separate set
of analysis variables and constraints is required for every loading case.

The purpose of this paper is to show that a judicious choice of design and analysis variables
can substantially improve the approach. In the case of a single loading condition, explicit and
exact mathematical programming formulations can be constructed in design spaces equal in size
to the original space, with no additional constraints. Whereas analysis is introduced in the
classical methods through equality constraints, there are no separate analysis equations in the
present method. For multiple loading conditions, the design spaces are expanded due to the
duplication of the analysis variables and additional constraints are required. In the latter case
the method is still very attractive, but its performance when compared to existing techniques is
problem dependent.

2. RATIONALE OF THE METHOD
Consider a statically redundant truss subjected to a single load vector p and let 80 and 81 be

respectively the cross-sectional areas of a basic statically determinate structure and the
redllndant bars, and to and t l be the corresponding stress resultants. The geometric com
patibility equations can be expressed as

(3)

where FI is the diagonal matrix of the redundant member flexibilities, elP are the relative
displacements of the end nodes of the redundant members due to the external loads, NI is a
matrix of influence coefficients Nij> and Nij is the relative displacement of the nodes of
redundant member i due to the self-equilibrating unit forces at the nodes of redundant member
j. Equations (3) are then solved for the redundant forces t l . However, since

(4)

where TI is the diagonal matrix corresponding to t l and 'I is the vector of diagonal elements of
Ft. eqn (3) can be rewritten as

(5)

This is an alternative form of the geometric compatibility requirements. As a result, com
patibility can be formulated two-fold. Given the areas of the basic and redundant members 80

and 81 and external loads p, the redundant forces are obtained from the solution of eqn (3).
Alternatively, given the areas of the basic members 80, a set of redundant forces tl and the
external loads p, one can obtain the areas of the redundant bars 81 by evaluating the r.h.s. of
eqn (5). Obviously, a structure composed of these areas and subject to p would produce the
same loads t l in its redundant bars. The compatibility equations are usually not presented as in
eqns (5), since they are of no practical use for the structural analyst. For the structural designer,
on the other hand, eqns (5) are most interesting. They indicate that in terms of variables 80 and
t), the entire design problem is explicit. For example, the ith equation of system (5) is

Ii = (ef +±Nijtj)/t; (6)
1=1

where r is the number of redundants (subscripts 1 have been omitted for the sake of clarity). It
is instructive to note that ef and Nij are explicit functions of the basic cross-sections 80 and
independent of 8 •• The stress resultants in the basic structure to are explicit functions of t l and
so are u and e. In addition, the redundant areas are explicit functions of 80 and t1 (6) and therefore
also the volume.
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These equations were developed based on a force method of structural analysis. Similar
equations can be constructed when considering a displacement type of analysis or a force
displacement method of analysis (Reissner). In all three cases, an exact explicit mathematical
programming problem can be formulated in a suitable design space as will be shown in the next
section.

3. EXPLICIT ANALYSIS
Consider a statically redundant truss of given geometry and material properties with m axial

members and n displacement degrees of freedom (m ~ n). The elements of the structure obey
Hooke's law and their constitutive law is given by the axial stiffnesses s or ftexibilities f, also
referred to symbolically by b. The behaviour of the structure is defined by the nodal displace
ments 0, element elongations e and element end loads t. These variables are related by the
equations governing the structural response:

Equilibrium equations: Qoto +Q.t. = p

Hooke's law: Soeo = to: Sle. = t.

Elongation-displacement relations: Roo =eo: R.o =e.

(7a)

(7b)

(7c)

where Qi =Rt(i =0, I) are functions of node coordinates and member connectivity only and
S;(i = 0, 1) are diagonal matrices of element stiffnesses. Subscripts "0" relate to a basic statically
determinate substructure and subscripts "1" correspond to the remaining redundant bars.

Hooke's law can also be expressed in terms of the ftexibilities

(8)

where F; =Sj-I (i =0, I).
In classical analysis the structural properties h are given quantities and the (2m +n) field

variables 0, e and t (behaviour variables in structural optimization terminology) are obtained
from the (2m +n) eqns (7). However, one could conceive a more general structural analysis
problem by including the m constitutive laws b in the variables set. This generates a problem
with (3m + n) unknowns and (2m + n) equations. The solution of these equations would
therefore be a function of m predetermined parameters. In the usual approach the parameters
are the constitutive law of the structure b. This leads invariably to the solution of a system of
linear equations in a subset of behaviour variables. The coefficients matrix of these equations is
a function of the parameters and any change in b requires, in principle, a new solution of the
equations. We will call this approach implicit analysis since the variables of the problem are
implicit functions of the parameters.

It will be shown in the following that for each of the three fundamental methods of (implicit)
structural analysis, that is, the Force, Displacement and Hybrid (Reissner's) Methods, there
exists a corresponding explicit analysis model. In all three cases, the variables are explicit
functions of the parameters and for any change in the parameters, the new values of the
variables are obtained by evaluating simple algebraic expressions.

(a) Force method
The classical approach of the Force Method is: Given the constitutive law of the truss bo

and h.. what are the conditions that the redundant forces t. have to satisfy in order to maintain
geometric compatibility. The compatibility equations can be obtained as follows. A set of
compatible elongations e have to verify (7c)

where

G=R.Ro- I
.

(9)

(10)
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Rewriting eqn (9) in terms of the axial forces gives with (8)

(II)

From equilibrium (7a) we have

(12)

(13)

Substitution of eqn (12) in eqn (11) yields the compatibility relations

(14)

These equations are identical to eqns (3) previously derived. The variables of the problem are
the redundant forces t, and the parameters are the flexibilities f. Every change in f alters the
coefficients matrix and requires a new solution of eqns (14) in llrder to compute t l .

In the Explicit Force Method the approach is: Given the constitutive law of a basic statically
determinate structure Ito and the forces in the redundant members t" find the constitutive law of
the redundant components h, in order to maintain geometric compatibility. The derivation of
the compatibility conditions is essentially similar to what was done previously, except for eqn
(11) which is rewritten such as

(15)

This leads to the compatibility equations

(16)

As indicated, the variables of the problem, f" are explicit functions of the parameters fo and t,.

(b) Displacement method
The equations of the Displacement Method can be obtained as follows: Given the con

stitutive law of the structure Ito and hI find the nodal displacements u that will maintain nodal
equilibrium. Rewriting the equilibrium equations (7a) in terms of elongations using Hooke's law
(7b) yields

(17)

and expressing the elongations as a function of the displacements (7c) gives the conditions for
nodal equilibrium

(18)

where the term in parenthesis is the reduced stiffness matrix K of the structure. The coefficients
matrix of these equations is a function of the parameters s and any change in these parameters
necessitates a new solution of these equations in order to determine the variables u.

Alternatively, in the Explicit Displacement Method the following problem is posed: Given a
set of nodal displacements u and the constitutive law of the redundant bars h, find the
constitutive law of the basic structure ho that will maintain nodal eqailibrium. The solution to
this problem is very similar to the previous derivation. Equation (17) is rewritten as

(19)

where Eo is the diagonal matrix corresponding to eo. Expressing e, in terms of u using eqn (7c),
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yields the explicit equilibrium conditions

where the variables So are explicit functions of the parameters u and Sl'

17

(20)

(c) Hybrid method
The Hybrid analysis equations, which can be derived from Reissner's Functional, express

the conditions that nodal displacements u and redundant forces t. have to satisfy if the
displacements and force fields are related by a given constitutive law h. Expressing the
constitutive law (7b), (8) in terms of u and t. using eqns (7c) and (12) yields the equations

[~ ~FJ {~} = {:J (21)

where 0 is a zero vector of the order of the statical redundancy of the structure. The variables of
the problem are u and t l and as previously, the coefficients matrix is a function of the
parameters h.

The Explicit Hybrid Method finds the constitutive law of a structure which has given nodal
displacements u and redundant forces t •. Rewr.ting the constitutive equations (7b) as

(22)

where Ej is the diagonal matrix corresponding to ej yields with eqn (12) the required con
IStitutive law

So =F.o-1(tb - GTt l )

51 = E.-Itl (23)

where the elongations are obtained from the displacements using eqn (7c). The variables of the
problem h are again explicit functions of the parameters u and t •.

The three fundamental analysis methods are summarized symbolically in Table I, for both
the implicit and explicit approach.

4, EXPLICIT DESIGN
We have shown in the previous section that the analysis of a structure of given geometry

and material properties could be conceived in a broader sense by considering the structural
properties of the members as variables of the problem in addition to the behaviour variables tl

and u. In this expanded set of variables (ho, h.. u, t.) two vectors are parameters and the
'remaining two vectors are obtained by imposing that the structure satisfies equilibrium,
compatibility and Hooke's law. In classic analysis the parameters are always the structural
properties ho, hi and the variables are behaviour variables. These are implicit functions of
(Ito, hi) and are obtained by solving a system of linear equations. In the present approach the
independent variables are suitable combinations of structural and/or behavioural variables. As a
result, the variables are explicit in terms of the parameters.

The usual approach in structural optimization is to pose the mathematical programming
problem in the space of the structural variables h. The behavioural variables are therefore
implicit functions of the design variables. However, if we formulate the minimization problem
in the space of (ho, t.), (u, hi) or (u, t.) the mathematical programming problem is explicit since

Table I. Implicit vs explicit analysis

Implicit equation Explicit equation

Force [ho. hlJ{t.} ={q} 14 hi =hl(ho. II) 16
Displacement [ho' h,]{II} =(p} 18 ho =h,j,1I. hi) 20

Hybrid [ho. hll{:'} ={~} 21 ho =h.l..lI. II)
23hi =hl(lI. II)
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all the behaviour variables' and the objective function are explicit functions of the design
vector. One will note that in all three cases the size of the design space is equal to the size of
the (ho, hi) design space since the number of nodal displacements u is equal to the number of
bars in the basic structure bo. The number of constraints is equal in both approaches. For the
case of a single loading condition, the proposed method is therefore very interesting, since it
bypasses the obstacle of multiple reanalysis without adding constraints or expanding the design
space.

The general numerical implementation of the technique calls, however, for some pre
cautions. The mixing of design variables of very different nature can distort the design space
and some variable scaling is recommended. Since analysis variables are included in the design
vector, the choice of an appropriate initial design is sometimes non-trivial. This is especially the
case in the displacement and hybrid approach where the nodal displacements are part of the
design vector. A single classical analysis solves usually the problem. To this effect, it is
important to realize that non-negativity constraints on the member cross-sections have to be
included in the formulation. For instance, a hybrid explicit analysis could very well yield
negative stiffnesses for some assumed values of the design vector (u, tl)'

Variables linking is usually considered beneficial in an optimization problem since it reduces
the dimensionality of the design space [4]. With the present approach the statement is not
always true. If the linking is between members of the basic structure or between redundant
members it reduces the size of the problem. The explicit force approach, design space (bo, tl)'
should be used in the first case and the explicit displacement approach, design space (u, hI),

should be used in the latter. If the linking expresses a physical symmetry of the problem, that
is, a symmetric structure subjected to a symmetric loading, any of the three methods can be
used.

, In practice, however, more general cases of variables linking do arise and as a result the
explicit optimization problem must be supplemented with equality constraints of the type

Vh=o (24)

where V is usually a binary matrix.
Multiple loading conditions can be treated similarly but they cause both an expansion of the

design space and an addition of equality constraints. In effect for every loading case a separate
set of behaviour variables is created. If we consider a force approach the design vector will be
the concatenation of foand tl(ql(q = 1,2, ... ,c) where q is the loading case index and c is the
number of loading conditions. Since every assumed internal force vector tl(q) can produce a
different redundant ftexibilities vector (16) the design must be supplemented with equality
constraints of the type

fl(q+')-f,(q)=o q=I,2, ... ,c-1. (25)

The objective function can be expressed in terms of any fl(q) or as a function of the arithmetic
mean of the fl(q),s.

The two extreme cases for assessing the efficiency of the explicit optimization problem are
thus, on the one hand, the design of a truss for a single loading condition without variables
linking and on the other hand, the case of multiple loading conditions with variables linking. In
the former case the present method is very powerful and probably superior to any other
available optimization scheme. The method becomes more involved in the latter case, due to
the addition of equality constraints and expansion of the design space and its performance
depends strongly on the specific problem at hand.

5. DESIG N SP ACES

It is instructuve to compare the design spaces of a same problem using an implicit
mathematical programming formulation and an explicit method. The three-bar symmetric truss
problem [1] appears to be very suitable for this purpose since the structure is statically
redundant and the design space is two-dimensional. The purpose of the optimization scheme is
to minimize the volume of a truss of given geometry and material properties submitted to a
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single loading condition (Fig. I). The design variables are the cross-sections of the external bars
at and the cross section of the middle bar a2. The axial stresses of the members are constrained
by upper and lower bounds, ~ and (j, respectively.

In the classical formulation, the optimization variables are the design variables and the
mathematical programming equations are:

subject to stress contraints

and to side constraints

minimize v = I(2a./c +a2) (26a)

(26b)

(26c)

(26d)

(26e)

(26f)

where v is the volume of the structure, I =10 in. is the length of the middle bar, C =cos(11'/4),
P=20,000 Ibs ~=20,000 psi, u=- 15,000 psi and u;(i =1,2,3) are the axial stresses in the 3
elements of the structure. The design space for this problem is shown in Fig. 2(a). The stress
constraints are given by full lines and three typical isovolume lines are shown by dotted lines.
The design is constrained by the upper stress limit for bar 1 and the optimum design variables
are at = 0.79, a2 = 0.41 yielding a minimum volume v =26.4.

Using an explicit force type approach we chose as basic structure the two external bars and
the optimization variables are at and the axial force in the redundant element 12, (all forces
normalized with respect to pl. From the geometry of the 'structure, we have (10), (13)

G = {I I}/2c

and

The compatibility equations in terms of a. and 12 become (16)

(27)

.t -- - •
2

--l-~

3

T
I

0, /

1
p

Fja. I. Symmetric three-bar truss problem.
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(a)
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(b)

Fig. 2(a). Implicit design space. (b) Explicit design space.

1.5 0,

1.5 0
I

It is this equation which is at the base of the explicit optimization problem. The axial forces in
the basic members are with eqn (12)

(28)

The stresses in the basic structure are obtained by dividing eqns (28) by at and the stress in the
redundant bar is computed using eqn (27). This gives the explicit design problem:

(29a)
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subject to stress constraints

and to side constraints on the design variables

21

(29b)

(29c)

(29d)

(2ge)

(29f)

The explicit design space is shown in Fig. 2(b). The constraints on 0';(; =1,2,3) and on the
cross-section OiU = I, 2) are given by full lines and 3 isovolume contours corresponding to the
ones in Fig. 2(a) are shown by dotted-lines. The optimum solution is o. = 0.79,12 = 0.30 yielding
the minimum volume v = 26.4.

6. NUMERICAL EXAMPLE

The IO-bar cantilever truss was originally introduced in Ref. [10] as a test case for numerical
experimentation of structural design methods and has since then been used by many authors for
that purpose. The structure is submitted to a single loading condition as shown in Fig. 3 and it is
tequired to minimize the volume of the truss subject to stress constraints - iij = J; == 25,000 psi
and to lower gage constraints OJ == 0.1 in2 for all the bars of the structure.

The constrained objective function was transformed into an internal penalty function and
sequentially minimized using a univariate search technique: conjugate directions in conjunction
with parabolic interpolation[lI]. The program was run on a CDC-CYBER 730 computer.

Thegraph in Fig. 4shows the variation of the volume of the structure as afunction ofthe number
of objective function and constraint evaluations (NFUNC). A full line connects design points
resulting from unconstrained minimizations and the dashed line joins corresponding designs when
scaled down to the most critical constraint. The problem converged in 4 cycles of unconstrained
minimizations starting from an initial design OJ = 10.0 in2for all the elements of the truss. The mean
CPU time for evaluating the objective function and its constraints was 0.00345 sec. One should note
two important aspects of the present approach. The smooth convergence of the minimization
process seems to indicate that the objective function and the constraints are well behaved
hypersurfaces in the explicit design space. However, not less more important is the low CPU time
required for evaluating the constraints. These characteristics emphasize, in the author'sopinion, the
potential benefits of this new approach.

360 360

"'

Fig. 3. IG-bar cantilever truss.
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Fig. 4. Convergence of the Io-bar truss problem.

7. CONCLUSIONS

We have shown that an explicit mathematical programming model can be formulated for the
design of a truss type structure of given geometry and material properties. This is obtained by
expressing the minimization problem in terms of a judicious choice of design variables and
behaviour variables. The technique derives roughly from the realization that it is often simpler
te! match a structure or part of it to imposed force andlor displacement fields than to compute
these fields when the structure is fully determined. This gave rise to three explicit analysis
methods corresponding to the three types of structural analysis: force method, displacement
method and the hybrid (Reissner's) method. Each of these methods lie at the base of an explicit
optimization formulation.

The type of minimization technique to be used is at the discretion of the designer and varies
with the problem and available computer programs. The important advantage of this new
method is that the obstacle of multiple structural reanalysis has been totally eliminated. In fact,
there is no place for a separate analysis module in the present scheme.

In the general case of a single loading condition, the technique is, in the author's opinion,
superior to any other available structural optimization method. When variables linking is
introduced or in the case of multiple loading conditions, the approach can lose some of its
attractiveness due to the addition of equality constraints and expansion of the design space. In
such cases, its efficiency, when compared to more classical approaches, depends strongly on the
problem to be solved.
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